Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov;27(7):671-82.
doi: 10.1016/j.neubiorev.2003.08.010.

Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder--the spontaneously hypertensive rat

Affiliations
Review

Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder--the spontaneously hypertensive rat

Vivienne Ann Russell. Neurosci Biobehav Rev. 2003 Nov.

Abstract

RUSSELL, V.A. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder-the spontaneously hypertensive rat. NEUROSCI. BIOBEHAV. REV.27(2003). Disturbances in glutamate, dopamine and norepinephrine function in the brain of a genetic animal model for attention-deficit hyperactivity disorder (ADHD), the spontaneously hypertensive rat (SHR), and information obtained from patients with ADHD, suggest a defect in neuronal circuits that are required for reward-guided associative learning and memory formation. Evidence derived from (i). the neuropharmacology of drugs that are effective in treating ADHD symptoms, (ii). molecular genetic and neuroimaging studies of ADHD patients, as well as (iii). the behaviour and biochemistry of animal models, suggests dysfunction of dopamine neurons. SHR have decreased stimulation-evoked release of dopamine as well as disturbances in the regulation of norepinephrine release and impaired second messenger systems, cAMP and calcium. In addition, evidence supports a selective deficit in the nucleus accumbens shell of SHR which could contribute to impaired reinforcement of appropriate behaviour.

PubMed Disclaimer

Similar articles

Cited by

Publication types