Interneuron diversity series: inhibitory interneurons and network oscillations in vitro
- PMID: 14624852
- DOI: 10.1016/j.tins.2003.09.016
Interneuron diversity series: inhibitory interneurons and network oscillations in vitro
Abstract
In vitro models of rhythms of cognitive relevance, such as gamma (30-80 Hz) and theta (5-12 Hz) rhythms in the hippocampus, demonstrate an absolute requirement for phasic inhibitory synaptic transmission. Such rhythms can occur transiently, of approximately 1 s duration, or persistently, lasting for many hours. In the latter case, stable patterns of interneuron output, and their postsynaptic consequences for pyramidal cell membrane potential, occur despite known constraints of synaptic habituation and potentiation. This review concentrates on recent in vitro evidence revealing a division of labour among different subclasses of interneurons with respect to the frequency of persistent rhythms, and the crucial dependence on gap-junction-mediated intercellular communication for the generation and maintenance of these rhythms.
Similar articles
-
Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.J Neurophysiol. 2003 Sep;90(3):1983-95. doi: 10.1152/jn.00060.2003. Epub 2003 May 15. J Neurophysiol. 2003. PMID: 12750426
-
Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro.Annu Rev Neurosci. 2004;27:247-78. doi: 10.1146/annurev.neuro.27.070203.144303. Annu Rev Neurosci. 2004. PMID: 15217333 Review.
-
Network mechanisms of gamma oscillations in the CA3 region of the hippocampus.Neural Netw. 2009 Oct;22(8):1113-9. doi: 10.1016/j.neunet.2009.07.024. Epub 2009 Jul 22. Neural Netw. 2009. PMID: 19683412 Review.
-
The electrical coupling confers to a network of interneurons the ability of transmitting excitatory inputs with high temporal precision.Brain Res. 2008 Aug 15;1225:47-56. doi: 10.1016/j.brainres.2008.05.021. Epub 2008 May 20. Brain Res. 2008. PMID: 18572148
-
Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.Nature. 1995 Feb 16;373(6515):612-5. doi: 10.1038/373612a0. Nature. 1995. PMID: 7854418
Cited by
-
Aβ impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex.Mol Neurodegener. 2013 Jan 17;8:3. doi: 10.1186/1750-1326-8-3. Mol Neurodegener. 2013. PMID: 23327202 Free PMC article.
-
The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models.Exp Brain Res. 2012 Apr;217(3-4):435-40. doi: 10.1007/s00221-011-2894-6. Epub 2011 Oct 18. Exp Brain Res. 2012. PMID: 22006270 Review.
-
Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.J Neurosci. 2008 Dec 17;28(51):13828-44. doi: 10.1523/JNEUROSCI.2684-08.2008. J Neurosci. 2008. PMID: 19091973 Free PMC article.
-
Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations.Front Syst Neurosci. 2014 Sep 18;8:169. doi: 10.3389/fnsys.2014.00169. eCollection 2014. Front Syst Neurosci. 2014. PMID: 25278847 Free PMC article.
-
Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex.Curr Res Neurobiol. 2023 Dec 16;6:100121. doi: 10.1016/j.crneur.2023.100121. eCollection 2024. Curr Res Neurobiol. 2023. PMID: 38616956 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous