Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;3(10):1895-903.
doi: 10.1002/pmic.200300561.

Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity

Affiliations

Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity

Yue Ge et al. Proteomics. 2003 Oct.

Abstract

To investigate the pathophysiological events of Duchenne muscular dystrophy, we analyzed alterations of protein expression in hindlimb muscles of three month old mdx mice using two-dimensional gel electrophoresis and mass spectrometry. About 40 differentially expressed proteins from the cytosolic fraction and 20 from the microsomal fraction of mdx hindlimb muscles were identified. Among these altered proteins, adenylate kinase 1 (AK 1) was particular interesting because its decrease in abundance was so dramatic (> four-fold). Enzymatic assays demonstrated that AK 1 activity was also decreased in mdx mice. Furthermore, the expression and enzymatic activity of AK 1 were consistently reduced in mdx mice at one and six months of age, suggesting a direct relationship between the lack of dystrophin and alteration of AK 1. Along with AK 1, creatine kinase (CK) provides a major pathway for regulation of nucleotide ratios and energy metabolism in muscles. To gain a better understanding of mechanisms of energy metabolism, we also investigated CK activities in these mdx mice at different ages. Our results suggested that decreased AK 1 expression and activity might result in redistribution of energy flow through the alternative CK system, thus a compensatory potential might limit cellular energy failure in mdx skeletal muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources