Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;3(10):1912-9.
doi: 10.1002/pmic.200300534.

Overcoming technical variation and biological variation in quantitative proteomics

Affiliations

Overcoming technical variation and biological variation in quantitative proteomics

Mark P Molloy et al. Proteomics. 2003 Oct.

Abstract

Quantitative proteomics investigates physiology at the molecular level by measuring relative differences in protein expression between samples under different experimental conditions. A major obstacle to reliably determining quantitative changes in protein expression is to overcome error imposed by technical variation and biological variation. In drug discovery and development the issue of biological variation often rises in concordance with the developmental stage of research, spanning from in vitro assays to clinical trials. In this paper we present case studies to raise awareness to the issues of technical variation and biological variation and the impact this places on applying quantitative proteomics. We defined the degree of technical variation from the process of two-dimensional electrophoresis as 20-30% coefficient of variation. On the other hand, biological variation observed experiment-to-experiment showed a broader degree of variation depending upon the sample type. This was demonstrated with case studies where variation was monitored across experiments with bacteria, established cell lines, primary cultures, and with drug treated human subjects. We discuss technical variation and biological variation as key factors to consider during experimental design, and offer insight into preparing experiments that overcome this challenge to provide statistically significant outcomes for conducting quantitative proteomic research.

PubMed Disclaimer

MeSH terms

LinkOut - more resources