Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 19;279(12):11264-72.
doi: 10.1074/jbc.M311110200. Epub 2003 Nov 20.

The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum

Affiliations
Free article

The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum

Richard J W Allen et al. J Biol Chem. .
Free article

Abstract

The membrane potential (Deltapsi) of the mature asexual form of the human malaria parasite, Plasmodium falciparum, isolated from its host erythrocyte using a saponin permeabilization technique, was investigated using both the radiolabeled Deltapsi indicator tetraphenylphosphonium ([(3)H]TPP(+)) and the fluorescent Deltapsi indicator DiBAC(4)(3) (bis-oxonol). For isolated parasites suspended in a high Na(+), low K(+) solution, Deltapsi was estimated from the measured distribution of [(3)H]TPP(+) to be -95 +/- 2 mV. Deltapsi was reduced by the specific V-type H(+) pump inhibitor bafilomycin A(1), by the H(+) ionophore CCCP, and by glucose deprivation. Acidification of the parasite cytosol (induced by the addition of lactate) resulted in a transient hyperpolarization, whereas a cytosolic alkalinization (induced by the addition of NH(4)(+)) resulted in a transient depolarization. A decrease in the extracellular pH resulted in a membrane depolarization, whereas an increase in the extracellular pH resulted in a membrane hyperpolarization. The parasite plasma membrane depolarized in response to an increase in the extracellular K(+) concentration and hyperpolarized in response to a decrease in the extracellular K(+) concentration and to the addition of the K(+) channel blockers Ba(2+) or Cs(+) to the suspending medium. The data are consistent with Deltapsi of the intraerythrocytic P. falciparum trophozoite being due to the electrogenic extrusion of H(+) via the V-type H(+) pump at the parasite surface. The current associated with the efflux of H(+) is countered, in part, by the influx of K(+) via Ba(2+)- and Cs(+)-sensitive K(+) channels in the parasite plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources