Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:9:1-23.
doi: 10.1016/s1569-2574(03)09001-4.

Plant reproductive development during spaceflight

Affiliations
Review

Plant reproductive development during spaceflight

Mary E Musgrave et al. Adv Space Biol Med. 2003.

Abstract

Reproductive development in microgravity has now been studied in a variety of plants; Arabidopsis, Brassica, and Triticum have been especially well studied. Earlier indications that gravity might be required for some stage of reproductive development have now been refuted. Nevertheless, the spaceflight environment presents many unique challenges that have often compromised the ability of plants to reproduce. These include limitations in hardware design to compensate for the unique environmental characteristics of microgravity, especially absence of convective air movement. Pollen development has been shown to be sensitive to high concentrations of ethylene prevailing on various orbital platforms. Barring these gross environmental problems, androecium and gynoecium development occur normally in microgravity, in that functional propagules are produced. Nonetheless, qualitative changes in anther and pistil development have been shown, and significant qualitative changes occur in storage reserve deposition during seed development. Apart from the intrinsic biological importance of these results, consequences of diminished seed quality when plants are grown in the absence of gravity will detract from the utility of plant-based life support systems. By understanding gravity's role in determining the microenvironments that prevail during reproductive development, counter-measures to these obstacles can be found, while at the same time providing basic knowledge that will have broader agricultural significance.

PubMed Disclaimer

Publication types