Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;97(6):1835-1839.
doi: 10.1213/01.ANE.0000087042.02266.F6.

Prevention of atelectasis formation during induction of general anesthesia

Affiliations

Prevention of atelectasis formation during induction of general anesthesia

Marco Rusca et al. Anesth Analg. 2003 Dec.

Abstract

General anesthesia promotes atelectasis formation, which is augmented by administration of large oxygen concentrations. We studied the efficacy of positive end-expiratory pressure (PEEP) application during the induction of general anesthesia (fraction of inspired oxygen [FIO(2)] 1.0) to prevent atelectasis. Sixteen adult patients were randomly assigned to one of two groups. Both groups breathed 100% O(2) for 5 min and, after a general anesthesia induction, mechanical ventilation via a face mask with a FIO(2) of 1.0 for another 5 min before endotracheal intubation. Patients in the first group (PEEP group) had continuous positive airway pressure (CPAP) (6 cm H(2)O) and mechanical ventilation via a face mask with a PEEP of 6 cm H(2)O. No CPAP or PEEP was applied in the control group. Atelectasis, determined by computed radiograph tomography, and analysis of blood gases were measured twice: before the beginning of anesthesia and directly after the intubation. There was no difference between groups before the anesthesia induction. After endotracheal intubation, patients in the control group showed an increase of the mean area of atelectasis from 0.8% +/- 0.9% to 4.1% +/- 2.0% (P = 0.0002), whereas the patients of the PEEP group showed no change (0.5% +/- 0.6% versus 0.4% +/- 0.7%). After the intubation with a FIO(2) of 1.0, PaO(2) was significantly higher in the PEEP group than in the control (591 +/- 54 mm Hg versus 457 +/- 99 mm Hg; P = 0.005). Atelectasis formation is prevented by application of PEEP during the anesthesia induction despite the use of large oxygen concentrations, resulting in improved oxygenation.

Implications: Application of positive end-expiratory pressure during the induction of general anesthesia prevents atelectasis formation. Furthermore, it improves oxygenation and probably increases the margin of safety before intubation. Therefore, this technique should be considered for all anesthesia induction, at least in patients at risk of difficult airway management during the anesthesia induction.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Marshall BE, Wyche MQ. Hypoxemia during and after anesthesia. Anesthesiology 1972; 37: 178–209.
    1. Moller JT, Johannessen NW, Berg H, et al. Hypoxaemia during anaesthesia: an observer study. Br J Anaesth 1991; 66: 437–44.
    1. Hedenstierna G, Tokics L, Strandberg A, et al. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand 1986; 30: 183–91.
    1. Neumann P, Rothen HU, Berglund JE, et al. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand 1999; 43: 295–301.
    1. Tokics L, Hedenstierna G, Strandberg A, et al. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 1987; 66: 157–67.

LinkOut - more resources