Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec;73(12):1155-9.

Changes in nerve conduction and Pi/PCr ratio during denervation-reinnervation of the gastrocsoleus muscles of rats

Collaborators, Affiliations
  • PMID: 1463379

Changes in nerve conduction and Pi/PCr ratio during denervation-reinnervation of the gastrocsoleus muscles of rats

K S Lai et al. Arch Phys Med Rehabil. 1992 Dec.

Erratum in

  • Arch Phys Med Rehabil 1993 May;74(5):467

Abstract

The purpose of this investigation was to study the changes in nerve conduction and phosphate metabolites of the gastrocsoleus muscles of rats during denervation-reinnervation. Sixteen male Sprague-Dawley rats underwent unilateral crush-denervation of the left sciatic nerves at the sciatic notch. Six rats were used for measurement of motor conduction latency and action potential amplitude of the gastrocsoleus muscle by stimulating the sciatic nerve at one, two and eight weeks after nerve crush. The other ten rats were designated for evaluation of the ratio of inorganic phosphorous (Pi) to phosphocreatine (PCr) by a 31P-phosphoenergetic spectrometer at two weeks and eight weeks after nerve crush. None of the sciatic nerves showed conduction to the gastrocsoleus at one or two weeks after nerve crush. At eight weeks postcrush, the motor conduction latency returned to within normal limits, whereas the action potential amplitude was only 55% of the normal. For the eight-week period of study, the Pi/PCr ratio of the normal control muscles ranged between 0.09 +/- 0.02 and 0.11 +/- 0.02 (mean +/- SD). The denervated muscles showed an increase of Pi/PCr ratio by 54% at two weeks postcrush, compared to the respective contralateral control sides. The ratios returned to the normal value by eight weeks postcrush. In summary, these data suggested that the metabolic recovery of the crush-denervated muscle followed the same pattern as the parameters of nerve conduction.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources