Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;308(3):880-6.
doi: 10.1124/jpet.103.057620. Epub 2003 Nov 21.

D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor

Affiliations

D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor

A Jarrahian et al. J Pharmacol Exp Ther. 2004 Mar.

Abstract

CB(1) cannabinoid (CB(1)) and D(2) dopamine (D(2)) receptors are known to couple to the G protein Galpha(i/o). It has been reported that concurrent activation of D(2) receptors and CB(1) receptors, in primary striatal neuronal culture, promotes functional CB(1) receptor coupling to Galpha(s) resulting in elevations in intracellular cyclic AMP levels. We now report that in the absence of D(2) receptors, acute activation of CB(1) receptors inhibits cyclic AMP accumulation, whereas the presence of D(2) receptors promotes CB(1)-stimulated cAMP accumulation, presumably through Galpha(s). This Galpha(s) subunit switching was not prevented by pertussis toxin treatment and occurred in the presence and absence of D(2) receptor activation. Thus, coexpression of the D(2) receptor with the CB(1) receptor was sufficient to switch the coupling of the CB(1) receptors from Galpha(i/o) to Galpha(s). Persistent activation of D(2) receptors resulted in heterologous sensitization of adenylate cyclase to subsequent stimulation by forskolin, whereas the persistent activation of CB(1) receptors did not. Additional studies in human embryonic kidney cells cotransfected with D(2) and CB(1) receptors revealed that persistent activation (18 h) of D(2) receptors induced a switch of CB(1) receptor coupling from Galpha(s) to Galpha(i/o). This D(2) receptor-induced effect allowed for CB(1) receptor-mediated inhibition of cyclic AMP accumulation. The present studies suggest D(2) receptors may have a significant modulatory role in determining the G protein coupling specificity of CB(1) receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources