Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 15;90(6):1149-65.
doi: 10.1002/jcb.10744.

Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling

Affiliations

Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling

Ying Peng et al. J Cell Biochem. .

Abstract

Bone formation is presumably a complex and well-orchestrated process of osteoblast lineage-specific differentiation. As members of the TGFbeta superfamily, bone morphogenetic proteins (BMPs) play an important role in regulating osteoblast differentiation and subsequent bone formation. Several BMPs are able to induce de novo bone formation. Although significant progress has recently been made about the transcriptional control of osteoblast differentiation, detailed molecular events underlying the osteogenic process remain to be elucidated. In order to identify potentially important signaling mediators activated by osteogenic BMPs but not by non-osteogenic BMPs, we sought to determine the transcriptional differences between three osteogenic BMPs (i.e., BMP-2, BMP-6, and BMP-9) and two inhibitory/non-osteogenic BMPs (i.e., BMP-3 and BMP-12). Through the microarray analysis of approximately 12,000 genes in pre-osteoblast progenitor cells, we found that expression level of 203 genes (105 up-regulated and 98 down-regulated) was altered >2-fold upon osteogenic BMP stimulation. Gene ontology analysis revealed that osteogenic BMPs, but not inhibitory/non-osteogenic BMPs, activate genes involved in the proliferation of pre-osteoblast progenitor cells towards osteoblastic differentiation, and simultaneously inhibit myoblast-specific gene expression. BMP-regulated expression of the selected target genes was confirmed by RT-PCR, as well as by the CodeLink Bioarray analysis. Our findings are consistent with the notion that osteogenesis and myogenesis are two divergent processes. Further functional characterization of these downstream target genes should provide important insights into the molecular mechanisms behind BMP-mediated bone formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources