Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;25(12):1147-9.
doi: 10.1002/bies.10394.

The spliceosome: the most complex macromolecular machine in the cell?

Affiliations
Review

The spliceosome: the most complex macromolecular machine in the cell?

Timothy W Nilsen. Bioessays. 2003 Dec.

Abstract

The primary transcripts, pre-mRNAs, of almost all protein-coding genes in higher eukaryotes contain multiple non-coding intervening sequences, introns, which must be precisely removed to yield translatable mRNAs. The process of intron excision, splicing, takes place in a massive ribonucleoprotein complex known as the spliceosome. Extensive studies, both genetic and biochemical, in a variety of systems have revealed that essential components of the spliceosome include five small RNAs-U1, U2, U4, U5 and U6, each of which functions as a RNA, protein complex called an snRNP (small nuclear ribonucleoprotein). In addition to snRNPs, splicing requires many non-snRNP protein factors, the exact nature and number of which has been unclear. Technical advances, including new affinity purification methods and improved mass spectrometry techniques, coupled with the completion of many genome sequences, have now permitted a number of proteomic analyses of purified spliceosomes. These studies, recently reviewed by Jurica and Moore,1 reveal that the spliceosome is composed of as many as 300 distinct proteins and five RNAs, making it among the most complex macromolecular machines known.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources