Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 15;66(12):2365-74.
doi: 10.1016/j.bcp.2003.07.017.

Inhibition of arterial contraction by dinitrosyl-iron complexes: critical role of the thiol ligand in determining rate of nitric oxide (NO) release and formation of releasable NO stores by S-nitrosation

Affiliations

Inhibition of arterial contraction by dinitrosyl-iron complexes: critical role of the thiol ligand in determining rate of nitric oxide (NO) release and formation of releasable NO stores by S-nitrosation

Jacicarlos L Alencar et al. Biochem Pharmacol. .

Abstract

The inhibition of arterial tone produced by two nitric oxide (NO) derivatives of biological relevance, dinitrosyl-iron complexes with cysteine (DNIC-CYS) or with glutathione (DNIC-GSH), was compared. Both compounds induced vasorelaxation within the same concentration range (3-300 nM) in endothelium-denuded rat aortic rings. Consistent with a faster rate of NO release from DNIC-CYS than from DNIC-GSH, the relaxant effect of DNIC-CYS was rapid in onset and tended to recover with time, whereas the one of DNIC-GSH developed slowly and was sustained. In addition, DNIC-GSH (0.3 and 1 microM) but not DNIC-CYS (1 microM) induced, even after washout of the drug, a persistent hyporesponsiveness to vasoconstrictors and a relaxant effect of low molecular weight thiols like N-acetylcysteine (NAC, which can displace NO from preformed NO stores). Both effects of DNIC-GSH were associated with elevation of cyclic GMP content and were attenuated by NO scavengers or a cyclic GMP-dependent protein kinases inhibitor. In rings previously exposed to DNIC-GSH, addition of mercuric chloride (which can cleave the cysteine-NO bond of S-nitrosothiols) elicited relaxation, completely blunted the one of NAC and also abolished the persistent elevation of NO content. In conclusion, this study shows that whereas both DNIC-CYS and DNIC-GSH elicited a NO release-associated relaxant effect in isolated arteries, only DNIC-GSH induced an inhibition of contraction which persisted after drug removal. The persistent effect of DNIC-GSH was attributed to the formation of releasable NO stores in arterial tissue, most probably as S-nitrosothiols. Thus, the nature of the thiol ligand plays a critical role in determining the mechanisms and duration of the effect of LMW-DNIC in arteries.

PubMed Disclaimer

Publication types

MeSH terms