Sequence specificity in the dimerization of transmembrane alpha-helices
- PMID: 1463743
- DOI: 10.1021/bi00166a002
Sequence specificity in the dimerization of transmembrane alpha-helices
Abstract
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.
Similar articles
-
The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices.Biochemistry. 1992 Dec 29;31(51):12726-32. doi: 10.1021/bi00166a003. Biochemistry. 1992. PMID: 1463744
-
Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.J Mol Biol. 2006 Dec 15;364(5):974-90. doi: 10.1016/j.jmb.2006.09.065. Epub 2006 Sep 29. J Mol Biol. 2006. PMID: 17049556
-
Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A.J Am Chem Soc. 2005 Jun 15;127(23):8478-84. doi: 10.1021/ja050581y. J Am Chem Soc. 2005. PMID: 15941282
-
Dimerization of glycophorin A transmembrane helices: mutagenesis and modeling.Soc Gen Physiol Ser. 1993;48:11-21. Soc Gen Physiol Ser. 1993. PMID: 8503039 Review. No abstract available.
-
Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.Biochim Biophys Acta. 2002 Oct 11;1565(2):246-66. doi: 10.1016/s0005-2736(02)00573-4. Biochim Biophys Acta. 2002. PMID: 12409199 Review.
Cited by
-
Thermodynamic analysis of the GASright transmembrane motif supports energetic model of dimerization.Biophys J. 2023 Jan 3;122(1):143-155. doi: 10.1016/j.bpj.2022.11.018. Epub 2022 Nov 12. Biophys J. 2023. PMID: 36371634 Free PMC article.
-
Evidence for an intermediate conformational state of LacY.Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E698-704. doi: 10.1073/pnas.1201107109. Epub 2012 Feb 21. Proc Natl Acad Sci U S A. 2012. PMID: 22355148 Free PMC article.
-
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis.Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27980-27988. doi: 10.1073/pnas.2008885117. Epub 2020 Oct 22. Proc Natl Acad Sci U S A. 2020. PMID: 33093207 Free PMC article.
-
Red-cell glycophorin A-band 3 interactions associated with the movement of band 3 to the cell surface.Biochem J. 2000 Aug 15;350 Pt 1(Pt 1):53-60. Biochem J. 2000. PMID: 10926825 Free PMC article.
-
Contribution of charged and polar residues for the formation of the E1-E2 heterodimer from Hepatitis C Virus.J Mol Model. 2010 Oct;16(10):1625-37. doi: 10.1007/s00894-010-0672-1. Epub 2010 Mar 2. J Mol Model. 2010. PMID: 20195665
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources