The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices
- PMID: 1463744
- DOI: 10.1021/bi00166a003
The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices
Abstract
Recent studies suggest specific roles for transmembrane helix association in a range of functions, but understanding of the conformation and energetics of these interactions has been elusive. We have studied the specific dimerization of the transmembrane helix of glycophorin A by calculating the minimized interaction energies of a large number of conformations using simulated annealing techniques and tested the models against mutational analysis data. We find that the dimer is best modeled as a right-handed supercoil with an extensive region of close packing along the dimer interface. Furthermore, we observe a sequence-specific propensity for a right-handed supercoil to form when starting the simulated annealing modeling from a dimer of helices with parallel axes, in contrast with the dimerization region of the transcription factor GCN4 which shows a high propensity for the more prevalent left-handed supercoiling.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Molecular Biology Databases