Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec 10;1180(2):187-94.
doi: 10.1016/0925-4439(92)90067-w.

Lead inhibits 1,25-dihydroxyvitamin D-3 regulation of calcium metabolism in osteoblastic osteosarcoma cells (ROS 17/2.8)

Affiliations

Lead inhibits 1,25-dihydroxyvitamin D-3 regulation of calcium metabolism in osteoblastic osteosarcoma cells (ROS 17/2.8)

F A Schanne et al. Biochim Biophys Acta. .

Abstract

We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118 +/- 4 nM to a peak value of 237 +/- 8 nM within 40 min. 1,25-(OH)2D3 also increased the initial rate of Ca2+ influx into ROS 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effect on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 microM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources