Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec 10;1180(2):201-6.
doi: 10.1016/0925-4439(92)90069-y.

Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid

Affiliations

Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid

M Hermes-Lima et al. Biochim Biophys Acta. .

Abstract

Swelling of isolated rat liver mitochondria is shown to be induced by metal-catalyzed 5-aminolevulinic acid (ALA) aerobic oxidation, a putative endogenous source of reactive oxygen species (ROS), at concentrations as low as 50-100 microM. In this concentration range, ALA is estimated to occur in the liver of acute intermittent porphyria patients. Removal of Ca2+ (10 microM) from the suspension of isolated rat liver mitochondria by added EGTA abolishes both the ALA-induced transmembrane-potential collapse and mitochondrial swelling. Prevention of the ALA-induced swelling by addition of ruthenium red prior to mitochondrial energization by succinate demonstrates the deleterious involvement of internal Ca2+. Addition of MgCl2 at concentrations higher than 2.5 mM, prevents the ALA-induced mitochondrial swelling, transmembrane potential collapse and Ca2+ efflux. This indicates that Mg2+ protects against the mitochondrial damage promoted by ALA-generated ROS. The ALA-induced mitochondrial damage might be a key event in the liver mitochondrial damage of acute intermittent porphyria patients reported elsewhere.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources