Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;60(3):181-92.
doi: 10.1016/s0166-3542(03)00156-6.

Structure-activity relationship of neomycin, paromomycin, and neamine-arginine conjugates, targeting HIV-1 gp120-CXCR4 binding step

Affiliations

Structure-activity relationship of neomycin, paromomycin, and neamine-arginine conjugates, targeting HIV-1 gp120-CXCR4 binding step

Gadi Borkow et al. Antiviral Res. 2003 Nov.

Abstract

We have recently designed and synthesized aminoglycoside-arginine conjugates (AACs) as potential anti-HIV-1 agents. AACs exert a number of activities related to Tat antagonism. We here present a new set of AACs, conjugates of neomycin B, paromomycin, and neamine with different number of arginines (1-6), their (a) uptake by human T-cell lines, (b) antiviral activities, (c) competition with monoclonal antibody (mAb) 12G5 binding to CXCR4, (d) competition with stromal cell-derived factor-1 (SDF-1alpha) binding to CXCR4, and (e) competition with HIV-1 coat protein gp120 cell penetration. The appearance of mutations in HIV-1 gp120 gene in AACs resistant HIV-1 isolates, supports that AACs inhibit HIV-1 infectivity via interference of gp120-CXCR4 interaction. Our results point that the most potent AACs is the hexa-arginine-neomycin conjugate, the other multi-arginine-aminoglycoside conjugates are less active, and the mono-arginine conjugates display the lowest activity. Our studies demonstrate that, in addition to the core, the number of arginines attached to a specific aminoglycoside, are also important in the design of potent anti-HIV agents. The AACs play an important role, not only as HIV-1 RNA binders but also as inhibitors of viral entry into human cells.

PubMed Disclaimer

Publication types

MeSH terms