Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 20;279(8):6994-7000.
doi: 10.1074/jbc.M312446200. Epub 2003 Nov 24.

Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin

Affiliations
Free article

Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin

Jae Man Lee et al. J Biol Chem. .
Free article

Abstract

In mammalian striated muscles, ryanodine receptor (RyR), triadin, junctin, and calsequestrin form a quaternary complex in the lumen of sarcoplasmic reticulum. Such intermolecular interactions contribute not only to the passive buffering of sarcoplasmic reticulum luminal Ca2+, but also to the active Ca2+ release process during excitation-contraction coupling. Here we tested the hypothesis that specific charged amino acids within the luminal portion of RyR mediate its direct interaction with triadin. Using in vitro binding assay and site-directed mutagenesis, we found that the second intraluminal loop of the skeletal muscle RyR1 (amino acids 4860-4917), but not the first intraluminal loop of RyR1 (amino acids 4581-4640) could bind triadin. Specifically, three negatively charged residues Asp4878, Asp4907, and Glu4908 appear to be critical for the association with triadin. Using deletional approaches, we showed that a KEKE motif of triadin (amino acids 200-232) is essential for the binding to RyR1. Because the second intraluminal loop of RyR has been previously shown to contain the ion-conducting pore as well as the selectivity filter of the Ca2+ release channel, and Asp4878, Asp4907, and Glu4908 residues are predicted to locate at the periphery of the pore assembly of the channel, our data suggest that a physical interaction between RyR1 and triadin could play an active role in the overall Ca2+ release process of excitation-contraction coupling in muscle cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources