Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 3;125(48):14893-900.
doi: 10.1021/ja0356737.

Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene

Affiliations

Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene

Hui Hu et al. J Am Chem Soc. .

Abstract

We report the sidewall functionalization of soluble HiPco single-walled carbon nanotubes (SWNTs) by addition of dichlorocarbene. The dichlorocarbene-functionalized SWNTs [(s-SWNT)CCl(2)] retain their solubility in organic solvents such as tetrahydrofuran and dichlorobenzene. The degree of dichlorocarbene functionalization was varied between 12% and 23% by using different amounts of the dichlorocarbene precursor. Because the addition of dichlorocarbene saturates the carbon atoms on the sidewall of the SWNTs and effectively replaces the delocalized partial double bonds with a cyclopropane functionality, the optical spectra of the SWNTs change dramatically. We estimate that the saturation of 25% of the pi-network electronic structure of the SWNTs is sufficient to remove all vestiges of the interband transitions in the infrared spectrum. The transitions at the Fermi level in the metallic SWNTs that appear in the far-infrared (FIR) region of the spectrum show a dramatic decrease of intensity on dichlorocarbene functionalization. The FIR region of the spectrum allows a clear differentiation between the covalent and the ionic chemistry of SWNTs. In contrast with covalent functionalization, we show that reaction of the SWNTs with bromine vapor leads to a strong increase in absorptions at the Fermi level that is observable in the FIR due to hole doping of the semiconducting SWNTs. Thermal treatment of the (s-SWNT)CCl(2) above 300 degrees C resulted in the breakage of C-Cl bonds, but did not restore the original electronic structure of the SWNTs.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources