Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec 19;994(1):81-90.
doi: 10.1016/j.brainres.2003.09.020.

Expression of bone morphogenetic proteins in the brain during normal aging and in 6-hydroxydopamine-lesioned animals

Affiliations
Comparative Study

Expression of bone morphogenetic proteins in the brain during normal aging and in 6-hydroxydopamine-lesioned animals

Hui-Ling Chen et al. Brain Res. .

Abstract

Bone morphogenetic proteins (BMPs), BMP receptors (BMPRs), and endogenous BMP antagonists have been found to be critically important for the development of the central nervous system (CNS) and peripheral organs in mammals. There is also increasing evidence that this system has significant activity in the adult CNS. Accordingly, we studied the regional distribution of endogenous BMP ligand proteins, receptors, and antagonists during aging and after lesion of the midbrain dopamine pathways produced by 6-hydroxydopamine (6-OHDA). We found that there were only small changes in the levels of these molecules as a function of age. Interestingly, levels of BMP 7 and noggin, a BMP antagonist, were uniquely elevated in substantia nigra. Moreover, after lesions of the midbrain dopamine system by 6-hydroxydopamine, there was a marked reduction in levels of all BMP ligands, receptors and antagonists bilaterally in both substantia nigra and hippocampus. There were also differential changes in BMP ligands, receptors, and antagonists in the cortex and striatum after such lesions. Taken together, our results indicate significant expression of BMP-related molecules in the adult and aging brain, and suggest a dynamic and differential regulation of these molecules after perturbations.

PubMed Disclaimer

Publication types

LinkOut - more resources