Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov 27;532(1-2):245-53.
doi: 10.1016/j.mrfmmm.2003.08.020.

G2 and spindle assembly checkpoint adaptation, and tetraploidy arrest: implications for intrinsic and chemically induced genomic instability

Affiliations
Review

G2 and spindle assembly checkpoint adaptation, and tetraploidy arrest: implications for intrinsic and chemically induced genomic instability

Paul R Andreassen et al. Mutat Res. .

Abstract

While checkpoints that act in S-phase are essential to the maintenance of genomic stability, these checkpoints do not act alone. Additionally, G2 DNA damage checkpoints, the spindle assembly checkpoint, and a post-mitotic G1 tetraploidy checkpoint act subsequent to DNA replication to ensure genetic fidelity in cell division. In this review, we will examine how these checkpoints cooperate in the maintenance of genomic stability in response to either DNA damage or cytoskeletal disruption. Since the G2 and spindle assembly checkpoints are subject to adaptation, we will discuss how the G1 tetraploidy checkpoint acts in concert with these checkpoints to mediate stable arrest. We will also probe the relationship of these checkpoints by exploring common features of their regulation. Finally, the consequences of malfunction of these checkpoints for both intrinsic and chemically induced genomic instability will be examined. Among these consequences are aneuploidization, extranumerary centrosomes, and micronucleation.

PubMed Disclaimer

Publication types

LinkOut - more resources