Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar-Apr;25(7-8):1269-78.
doi: 10.1016/j.biomaterials.2003.08.046.

Multi-channeled biodegradable polymer/CultiSpher composite nerve guides

Affiliations
Comparative Study

Multi-channeled biodegradable polymer/CultiSpher composite nerve guides

Matthew D Bender et al. Biomaterials. 2004 Mar-Apr.

Abstract

Innovative methods to fabricate porous, biodegradable conduits were developed to produce nerve guides with multiple longitudinally aligned channels. The geometry of the nerve guide's channels was designed to be appropriate for harboring neurite extension. Both the coated mandrel and mandrel adhesion techniques permit flexibility in the number of channels, channel organization, and channel diameters. In this study, the composite nerve guides were comprised of poly(caprolactone) (PCL) and porous collagen-based beads (CultiSphers). The incorporation of the collagenous beads results in enhanced cortical neuron adhesion, viability, and neurite extension as compared to PCL alone. Additionally, Schwann cell studies indicated that the PCL/CultiSpher composite is a suitable substrate for cell adhesion. Mechanical properties of the PCL/CultiSpher material and in vitro degradation rates indicate the potential usefulness of this novel composite for use in the fabrication of nerve guides.

PubMed Disclaimer

MeSH terms

LinkOut - more resources