Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar-Apr;25(7-8):1331-7.
doi: 10.1016/j.biomaterials.2003.08.013.

Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification

Affiliations
Comparative Study

Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification

Lichuan Qian et al. Biomaterials. 2004 Mar-Apr.

Abstract

Poly-D-lysine, poly-L-lysine, collagen, laminin, fibronectin, and Matrigel were compared with standard tissue grade polystyrene for their impact on the expansion and neuronal differentiation of mesenchymal stem cells (MSCs). Among these substrates, adsorption of Matrigel at 5 microg/cm2 did not enhance cell proliferation but gave rise to the highest percentage of MSC-derived neuron-like cells with the best morphological differentiation. Matrigel at a higher coating density of 50 microg/cm2 not only further enhanced the differentiation but also significantly improved cell expansion. In contrast, poly-D-lysine did not effectively support the growth of MSCs. Hence the expansion and neuronal differentiation of MSCs both depend on surface properties of the culture substrate. These results could lead to a culture process with improved yield of MSC-derived neuron-like cells and to novel biomaterials for tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources