Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov;142(5):288-97.
doi: 10.1016/S0022-2143(03)00148-3.

Apoptosis and oxidants in the heart

Affiliations
Review

Apoptosis and oxidants in the heart

Dinender Kumar et al. J Lab Clin Med. 2003 Nov.

Abstract

Cardiomyocyte (CM) apoptosis has been reported in a variety of cardiovascular diseases, including myocardial infarction, ischemia/reperfusion, end-stage heart failure, arrhythmogenic right ventricular dysplasia, and adriamycin-induced cardiomyopathy. The role of CM apoptosis in the development and progression of cardiac diseases merits further investigation. Cumulative evidence suggests that reactive oxygen species (ROS), which have been implicated in cardiac pathophysiology, can trigger myocyte apoptosis by up-regulating proapoptotic proteins, such as Bax and caspases, and the mitochondria-dependent pathway. These apoptotic proteins and pathways are inhibited by various antioxidants, as well as by overexpression of the antiapoptotic protein Bcl-2 by way of the antioxidant pathway. Detection of CM apoptosis with the terminal transferase-mediated DNA nick-end labeling assay alone has recently been questioned because of technical concerns regarding its sensitivity and specificity. Because CMs are mononuclear or binuclear, if only one nucleus or a certain percentage of fragmented nuclei is stained with TUNEL assay at the early stage of apoptotic cell death, it remains unknown whether this particular early apoptotic CM is still functionally active. The issue of TUNEL specificity further questions reports of high percentages of apoptotic CM nuclei (0.02%-35%) in the heart. Nevertheless, oxidative stress is a major apoptotic stimulus in many cardiovascular diseases and the process can be inhibited by antioxidants both in vitro and in vivo.

PubMed Disclaimer

Publication types