Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation
- PMID: 14647429
- DOI: 10.1038/sj.onc.1207301
Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation
Abstract
The p53-regulated growth arrest and DNA damage-inducible gene product Gadd45a has been recently identified as a key factor protecting the epidermis against ultraviolet radiation (UVR)-induced skin tumors by activating p53 via the stress mitogen-activated protein kinase (MAPK) signaling pathway. Herein we identify Gadd45a as an important negative regulator of two oncogenes commonly over-expressed in epithelial tumors: the p53 homologue DeltaNp63alpha and beta-catenin. DeltaNp63alpha is one of the several p63 isoforms and is the predominant species expressed in basal epidermal keratinocytes. DeltaNp63alpha lacks the N-terminal transactivation domain and behaves as a dominant-negative factor blocking expression of several p53-effector genes. DeltaNp63alpha also associates with and blocks activation of the adenomatous polyposis coli (APC) destruction complex that targets free cytoplasmic beta-catenin for degradation. While most beta-catenin protein is localized to the cell membrane and is involved in cell-cell adhesion, accumulation of free cytoplasmic beta-catenin will translocate into the nucleus where it functions in a bipartite transcription factor complex, whose targets include invasion and metastasis promoting endopeptidases, matrix metalloproteinases (MMP). We show that Gadd45a not only directly associates with two components of the APC complex, namely protein phosphatase 2A (PP2A) and glycogen synthase kinase 3beta (GSK3beta) but also promotes GSK3beta dephosphorylation at Ser9, which is essential for GSK3beta activation, and resultant activation of the APC destruction complex. We demonstrate that lack of Gadd45a not only prevents DeltaNp63alpha suppression and GSK3beta dephosphorylation but also prevents free cytoplasmic beta-catenin degradation after UV irradiation. The inability of Gadd45a-null keratinocytes to suppress beta-catenin may contribute to the resulting observation of increased MMP expression and activity along with significantly faster keratinocyte migration in Matrigel in vitro and accelerated wound closure in vivo. Furthermore, epidermal keratinocytes treated with p38 MAPK inhibitors, both in vivo and in vitro, behave very similarly to Gadd45a-null keratinocytes after UVR. Similarly, Trp53-null mice are unable to attenuate DeltaNp63alpha expression in epidermal keratinocytes after such stress. These findings demonstrate a dependence on Gadd45a-mediated p38 MAPK and p53 activation for proper modulation of DeltaNp63alpha, GSK3beta, and beta-catenin after irradiation. Taken together, our results indicate that Gadd45a is able to repress DeltaNp63alpha, beta-catenin, and consequently MMP expression by two means: by maintaining UVR-induced p38 MAPK and p53 activation and also by associating with the APC complex. This implicates Gadd45a in the negative regulation of cell migration, and invasion.
Similar articles
-
Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53.Cancer Res. 2002 Dec 15;62(24):7305-15. Cancer Res. 2002. PMID: 12499274
-
Casein kinase 2- and protein kinase A-regulated adenomatous polyposis coli and beta-catenin cellular localization is dependent on p38 MAPK.J Biol Chem. 2005 Apr 29;280(17):17221-6. doi: 10.1074/jbc.M410440200. Epub 2005 Jan 13. J Biol Chem. 2005. PMID: 15649893
-
Gadd45a regulates beta-catenin distribution and maintains cell-cell adhesion/contact.Oncogene. 2007 Sep 27;26(44):6396-405. doi: 10.1038/sj.onc.1210469. Epub 2007 Apr 23. Oncogene. 2007. PMID: 17452974
-
[Familial adenomatous polyposis syndrome (FAP): pathogenesis and molecular mechanisms].Med Klin (Munich). 2003 Dec 15;98(12):776-82. doi: 10.1007/s00063-003-1325-2. Med Klin (Munich). 2003. PMID: 14685680 Review. German.
-
[APC protein: protein interactions and cellular functions].Gastroenterol Clin Biol. 1998 Dec;22(12):1071-80. Gastroenterol Clin Biol. 1998. PMID: 10051984 Review. French. No abstract available.
Cited by
-
Carfilzomib inhibits the growth of lung adenocarcinoma via upregulation of Gadd45a expression.J Zhejiang Univ Sci B. 2020 Jan.;21(1):64-76. doi: 10.1631/jzus.B1900551. J Zhejiang Univ Sci B. 2020. PMID: 31898443 Free PMC article.
-
The dual role of p63 in cancer.Front Oncol. 2023 Apr 27;13:1116061. doi: 10.3389/fonc.2023.1116061. eCollection 2023. Front Oncol. 2023. PMID: 37182132 Free PMC article. Review.
-
Gadd45 in DNA Demethylation and DNA Repair.Adv Exp Med Biol. 2022;1360:55-67. doi: 10.1007/978-3-030-94804-7_4. Adv Exp Med Biol. 2022. PMID: 35505162
-
ΔNp63α-mediated epigenetic regulation in keratinocyte senescence.Epigenetics. 2023 Dec;18(1):2173931. doi: 10.1080/15592294.2023.2173931. Epub 2023 Feb 9. Epigenetics. 2023. PMID: 36760085 Free PMC article.
-
Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT.Neuro Oncol. 2011 Oct;13(10):1059-73. doi: 10.1093/neuonc/nor109. Epub 2011 Aug 2. Neuro Oncol. 2011. PMID: 21813510 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous