Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;30(4):285-307.
doi: 10.1023/a:1026194618660.

Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models

Affiliations
Comparative Study

Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models

Sven Björkman. J Pharmacokinet Pharmacodyn. 2003 Aug.

Abstract

Physiologically based pharmacokinetic (PBPK) models can be used to predict drug disposition in humans from animal data and the influence of disease or other changes in physiology on the pharmacokinetics of a drug. The potential usefulness of a PBPK model must however be balanced against the considerable effort needed for its development. Proposed methods to simplify PBPK modeling include predicting the necessary tissue:blood partition coefficients (kp) from physicochemical data on the drug instead of determining them in vivo, formal lumping of model compartments, and replacing the various kp values of the organs and tissues by only two values, for "fat" and "lean" tissues, respectively. The aim of this study was to investigate the effects of simplifying complex PBPK models on their ability to predict drug disposition in humans. Arterial plasma concentration curves of fentanyl and pethidine were simulated by means of a number of successively reduced models. Median absolute prediction errors were used to evaluate the performance of each model, in relation to arterial plasma concentration data from clinical studies, and the Wilcoxon matched pairs test was used for comparison of predictions. An originally diffusion-limited model for fentanyl was simplified to perfusion-limitation, and this model was either lumped, reducing 11 organ/tissue compartments to six, or changed to a model based on only two kp values, those of fat (used for fat and lungs) and muscle (used for all other tissues). None of these simplifications appreciably changed the predictions of arterial drug concentrations in the 10 patients. Perfusion-limited models for pethidine were set up using either experimentally determined [Gabrielsson et al. 1986] or theoretically calculated [Davis and Mapleson 1993] kp values, and predictions using the former were found to be significantly better. Lumping of the models did not appreciably change the predictions; however, going from a full set of kp values to only two ("fat" and "lean") had an adverse effect. Using a kp for lungs determined either in rats or indirectly in humans [Persson et al. 1988], i.e., a total of three kp values, improved these predictions. In conclusion, this study strongly suggested that complex PBPK models for lipophilic basic drugs may be considerably reduced with marginal loss of power to predict standard plasma pharmacokinetics in humans. Determination of only two or three kp values instead of a "full" set can mean an important reduction of experimental work to define a basic model. Organs of particular pharmacological or toxicological interest should of course be investigated separately as needed. This study also suggests and applies a simple method for statistical evaluation of the predictions of PBPK models.

PubMed Disclaimer

References

    1. Br J Clin Pharmacol. 1981 May;11(5):523-6 - PubMed
    1. Drug Metab Dispos. 1998 Jun;26(6):585-94 - PubMed
    1. J Pharm Sci. 2001 Apr;90(4):436-47 - PubMed
    1. Br J Anaesth. 1993 Mar;70(3):248-58 - PubMed
    1. Clin Phys Physiol Meas. 1989 Aug;10(3):187-217 - PubMed

Publication types

LinkOut - more resources