The SARS-CoV S glycoprotein: expression and functional characterization
- PMID: 14651994
- PMCID: PMC7111010
- DOI: 10.1016/j.bbrc.2003.11.054
The SARS-CoV S glycoprotein: expression and functional characterization
Abstract
We have cloned, expressed, and characterized the full-length and various soluble fragments of the SARS-CoV (Tor2 isolate) S glycoprotein. Cells expressing S fused with receptor-expressing cells at neutral pH suggesting that the recombinant glycoprotein is functional, its membrane fusogenic activity does not require other viral proteins, and that low pH is not required for triggering membrane fusion; fusion was not observed at low receptor concentrations. S and its soluble ectodomain, S(e), were not cleaved to any significant degree. They ran at about 180-200kDa in SDS gels suggesting post-translational modifications as predicted by previous computer analysis and observed for other coronaviruses. Fragments containing the N-terminal amino acid residues 17-537 and 272-537 but not 17-276 bound specifically to Vero E6 cells and purified soluble receptor, ACE2, recently identified by M. Farzan and co-workers [Nature 426 (2003) 450-454]. Together with data for inhibition of binding by antibodies developed against peptides from S, these findings suggest that the receptor-binding domain is located between amino acid residues 303 and 537. These results also confirm that ACE2 is a functional receptor for the SARS virus and may help in the elucidation of the mechanisms of SARS-CoV entry and in the development of vaccine immunogens and entry inhibitors.
Figures






Similar articles
-
Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor.J Virol. 2004 May;78(9):4552-60. doi: 10.1128/jvi.78.9.4552-4560.2004. J Virol. 2004. PMID: 15078936 Free PMC article.
-
Receptor-binding domain of SARS-Cov spike protein: soluble expression in E. coli, purification and functional characterization.World J Gastroenterol. 2005 Oct 21;11(39):6159-64. doi: 10.3748/wjg.v11.i39.6159. World J Gastroenterol. 2005. PMID: 16273643 Free PMC article.
-
Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors.Lancet. 2004 Mar 20;363(9413):938-47. doi: 10.1016/S0140-6736(04)15788-7. Lancet. 2004. PMID: 15043961 Free PMC article.
-
The SARS-CoV S glycoprotein.Cell Mol Life Sci. 2004 Oct;61(19-20):2428-30. doi: 10.1007/s00018-004-4257-y. Cell Mol Life Sci. 2004. PMID: 15526150 Free PMC article. Review.
-
Insights from the association of SARS-CoV S-protein with its receptor, ACE2.Adv Exp Med Biol. 2006;581:209-18. doi: 10.1007/978-0-387-33012-9_36. Adv Exp Med Biol. 2006. PMID: 17037532 Free PMC article. Review. No abstract available.
Cited by
-
Melatonin potentials against viral infections including COVID-19: Current evidence and new findings.Virus Res. 2020 Oct 2;287:198108. doi: 10.1016/j.virusres.2020.198108. Epub 2020 Aug 5. Virus Res. 2020. PMID: 32768490 Free PMC article. Review.
-
Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches.Immunotargets Ther. 2021 Mar 9;10:63-85. doi: 10.2147/ITT.S280706. eCollection 2021. Immunotargets Ther. 2021. PMID: 33728277 Free PMC article. Review.
-
COVID-19 and Heart: From Clinical Features to Pharmacological Implications.J Clin Med. 2020 Jun 22;9(6):1944. doi: 10.3390/jcm9061944. J Clin Med. 2020. PMID: 32580344 Free PMC article. Review.
-
ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis.J Biol Chem. 2004 Apr 23;279(17):17996-8007. doi: 10.1074/jbc.M311191200. Epub 2004 Jan 30. J Biol Chem. 2004. PMID: 14754895 Free PMC article.
-
Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice.J Virol. 2006 Apr;80(8):4079-87. doi: 10.1128/JVI.80.8.4079-4087.2006. J Virol. 2006. PMID: 16571824 Free PMC article.
References
-
- Dimitrov D.S. Cell biology of virus entry. Cell. 2000;101:697–702. - PubMed
-
- Holmes K.V. SARS-associated coronavirus. N. Engl. J. Med. 2003;348:1948–1951. - PubMed
-
- Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. - PubMed
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous