Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;14(4):703-32.

Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics

Affiliations
  • PMID: 14653499

Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics

Michael Breakspear et al. Network. 2003 Nov.

Abstract

In this paper, complex dynamical synchronization in a non-linear model of a neural system is studied, and the computational significance of the behaviours is explored. The local neural dynamics is determined by voltage- and ligand-gated ion channels and feedback between densely interconnected excitatory and inhibitory neurons. A mesoscopic array of local networks is modelled by introducing coupling between the local networks via weak excitatory-to-excitatory connectivity. It is shown that with modulation of this long-range synaptic coupling, the system undergoes a transition from independent oscillations to stable chaotic synchronization. Between these states exists a 'weakly' stable state associated with complex, intermittent behaviour in the temporal domain and clusters of synchronous regions in the spatial domain. The paper concludes with a discussion of the putative relevance of such processes in the brain, including the role of neuromodulatory systems and the mechanisms underlying sensory perception, adaptation, computation and complexity.

PubMed Disclaimer

Publication types