Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec 15;420(2):287-97.
doi: 10.1016/j.abb.2003.09.046.

Ischemia-reperfusion injury in the aged heart: role of mitochondria

Affiliations
Review

Ischemia-reperfusion injury in the aged heart: role of mitochondria

Edward J Lesnefsky et al. Arch Biochem Biophys. .

Abstract

The aged heart sustains greater injury during ischemia and reperfusion compared to the adult heart. Aging decreases oxidative phosphorylation and the activity of complexes III and IV only in interfibrillar mitochondria (IFM) that reside among the myofibrils, whereas subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, remain unaltered. The peptide subunit composition of complexes III and IV is intact in aging. The aging defect in complex IV is in the inner membrane lipid environment. The defect in complex III is within the ubiquinol binding site of the cytochrome b subunit. Following ischemia, in the aged heart both SSM and IFM sustain additional decreases in complex III and complex IV activity. In contrast to the aging defect, with ischemia the subunits of complex IV appear to be damaged. Ischemia inactivates the iron-sulfur peptide subunit in complex III. Mitochondria are the major source of the reactive oxygen species that are generated during myocardial ischemia. Complex III is the major site of mitochondrial oxyradical production during ischemia in the adult heart. The role of complex III in the oxidative damage sustained by the aged heart during ischemia, as well as the potential contribution of aging defects in electron transport to ischemic damage in the aged heart, deserves further study. We propose that following ischemic damage to the electron transport chain, the production and release of reactive oxygen species increases from mitochondria in the aged heart, leading to additional damage during reperfusion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources