Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec 15;420(2):305-11.
doi: 10.1016/j.abb.2003.09.023.

Preconditioning potentiates redox signaling and converts death signal into survival signal

Affiliations
Review

Preconditioning potentiates redox signaling and converts death signal into survival signal

Dipak K Das et al. Arch Biochem Biophys. .

Abstract

Reactive oxygen species (ROS) play a crucial role in the pathophysiology of ischemic heart disease by causing cardiac dysfunction and cell death. Several redox-sensitive anti- and pro-apoptotic transcription factors including NFkappaB and AP-1 progressively and steadily increase in the heart as a function of the duration of ischemia and reperfusion. When the heart is preconditioned to ischemic stress by repeated short-term ischemia and reperfusion, NFkappaB remains high while AP-1 is lowered to almost baseline value. The anti-apoptotic gene Bcl-2 is downregulated in the ischemic/reperfused heart, while it is upregulated in the adapted myocardium. Cardioprotective abilities of the preconditioning are abolished when heart is pre-perfused with N-acetyl cysteine, a scavenger for ROS, suggesting the role of ROS in redox signaling. Mammalian heart is protected by several defense systems which include among others, redox-regulated protein, thioredoxin. Reperfusion of ischemic myocardium results in the downregulation of thioredoxin 1 (Trx 1) expression, which was upregulated in the preconditioned myocardium. The increased expression of Trx 1 is completely blocked with an inhibitor of Trx 1, CDDP, which also abolished cardioprotection afforded by ischemic adaptation. The cardioprotective role of Trx 1 is confirmed further with transgenic mouse hearts overexpressing Trx 1. The Trx 1 mouse hearts displayed significantly improved post-ischemic ventricular recovery and reduced myocardial infarct size and apoptosis as compared to the corresponding wild-type mouse hearts. Taken together, preconditioning appears to potentiate redox signaling, which converts the "death signal" into "survival signal."

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources