Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec;35(12):1399-405.
doi: 10.1016/s0022-2828(03)00246-3.

Decreased ATP-sensitive K(+) current density during chronic human atrial fibrillation

Affiliations
Comparative Study

Decreased ATP-sensitive K(+) current density during chronic human atrial fibrillation

Bartosz Balana et al. J Mol Cell Cardiol. 2003 Dec.

Abstract

Chronic atrial fibrillation (AF) is associated with shortening of action potential duration (APD), which involves modified activity of atrial ion currents. However, little is known about the activity of ATP-sensitive K(+) channels (I(K,ATP)) during chronic AF. An AF-related increase in the activity of I(K,ATP) would reduce APD and could contribute to initiation and/or perpetuation of AF. Here, we studied the activity of I(K,ATP) in atrial myocytes from patients with sinus rhythm (SR) and chronic AF. Human atrial myocytes were isolated from atrial tissue obtained from patients undergoing open-heart surgery. Inward rectifier currents were measured with the whole-cell patch-clamp technique by applying a depolarizing ramp pulse (1245 ms) from -100 to +40 mV (0.5 Hz). I(K,ATP) was activated with the I(K,ATP) channel opener rilmakalim. The inward rectifier I(K1) and I(K,ATP) were identified by their sensitivity to 1 mM Ba(2+). Density of I(K1) did not differ between cells from patients with AF (at -100 mV: -14.8 +/- 1.3 pA/pF, n = 38/10 (cells/patients)) and SR (-13.8 +/- 1.5 pA/pF, n = 33/16). In both types of cells, rilmakalim stimulated I(K,ATP) (defined as rilmakalim-inducible current) in a concentration-dependent manner (0.3-10 microM). However, maximum activation of I(K,ATP) with 10 microM rilmakalim was smaller in AF than in SR cells (at -100 mV: -5.3 +/- 0.8 pA/pF, n = 22/7 vs. -11.2 +/- 2.9 pA/pF, n = 19/9; at +40 mV: +9.6 +/- 2.1 pA/pF, n = 22/7 vs. +23.7 +/- 3.4 pA/pF, n = 19/9 for AF and SR, respectively; P < 0.05). Only aortic valve disease and pulmonary hypertension were found to be independent contributors to I(K,ATP) current density. We provide evidence that chronic AF is associated with a downregulation of ATP-sensitive K(+) currents. These changes may provide an additional molecular mechanism for electrical remodeling in chronic AF.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources