Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;35(12):1481-90.
doi: 10.1016/j.yjmcc.2003.09.016.

Reoxygenation-induced rigor-type contracture

Affiliations

Reoxygenation-induced rigor-type contracture

Yury Ladilov et al. J Mol Cell Cardiol. 2003 Dec.

Abstract

The hypothesis tested was that reoxygenation-induced contracture of myocardial cells, a form of reperfusion injury, can be due to a rigor-type mechanism. Isolated adult cardiomyocytes were exposed to 30- or 60-min anoxia (pH 6.4) and reoxygenation (pH 7.4). In cardiomyocytes, cytosolic Ca(2+) and cell length, and in isolated rat hearts left ventricular end-diastolic pressure (LVEDP) were measured. During reoxygenation, cardiomyocytes developed contracture. When energy recovery was slowed down, less Ca(2+) overload was required for contracture: (1) after 30-min anoxia Ca(20) (cytosolic Ca(2+) concentration in cells with 20% cell length reduction) was 1.42 +/- 0.11 micromol/l; (2) after 30-min anoxia with partial mitochondrial inhibition during reoxygenation (NaCN, 0.1 mmol/l) Ca(20) was reduced to 0.69 +/- 0.05 micromol/l; (3) after 60-min anoxia Ca(20) was reduced to 0.78 +/- 0.05 micromol/l and (4) when energy recovery was accelerated (succinate, 0.2 mmol/l), Ca(20) rose to 1.35 +/- 0.05 micromol/l. In isolated hearts, the reperfusion-induced rise in LVEDP was modulated by the same interventions. Slow recovery of energy production favors reoxygenation-induced contracture in cardiomyocytes and hearts. This shows that rigor contracture contributes to reoxygenation-induced cell injury.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources