Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature
- PMID: 14654841
- DOI: 10.1038/nature02108
Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature
Abstract
Protein coats deform flat lipid membranes into buds and capture membrane proteins to form transport vesicles. The assembly/disassembly cycle of the COPI coat on Golgi membranes is coupled to the GTP/GDP cycle of the small G protein Arf1. At the heart of this coupling is the specific interaction of membrane-bound Arf1-GTP with coatomer, a complex of seven proteins that forms the building unit of the COPI coat. Although COPI coat disassembly requires the catalysis of GTP hydrolysis in Arf1 by a specific GTPase-activating protein (ArfGAP1), the precise timing of this reaction during COPI vesicle formation is not known. Using time-resolved assays for COPI dynamics on liposomes of controlled size, we show that the rate of ArfGAP1-catalysed GTP hydrolysis in Arf1 and the rate of COPI disassembly increase over two orders of magnitude as the curvature of the lipid bilayer increases and approaches that of a typical transport vesicle. This leads to a model for COPI dynamics in which GTP hydrolysis in Arf1 is organized temporally and spatially according to the changes in lipid packing induced by the coat.
Comment in
-
Membrane trafficking: coat control by curvature.Nature. 2003 Dec 4;426(6966):507-8. doi: 10.1038/426507a. Nature. 2003. PMID: 14654824 No abstract available.
Similar articles
-
Membrane trafficking: coat control by curvature.Nature. 2003 Dec 4;426(6966):507-8. doi: 10.1038/426507a. Nature. 2003. PMID: 14654824 No abstract available.
-
Functional reconstitution of COPI coat assembly and disassembly using chemically defined components.Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8253-7. doi: 10.1073/pnas.1432391100. Epub 2003 Jun 27. Proc Natl Acad Sci U S A. 2003. PMID: 12832619 Free PMC article.
-
Membrane curvature and the control of GTP hydrolysis in Arf1 during COPI vesicle formation.Biochem Soc Trans. 2005 Aug;33(Pt 4):619-22. doi: 10.1042/BST0330619. Biochem Soc Trans. 2005. PMID: 16042557 Review.
-
ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells.J Cell Biol. 2005 Mar 28;168(7):1053-63. doi: 10.1083/jcb.200410142. J Cell Biol. 2005. PMID: 15795316 Free PMC article.
-
The COPI system: molecular mechanisms and function.FEBS Lett. 2009 Sep 3;583(17):2701-9. doi: 10.1016/j.febslet.2009.07.032. Epub 2009 Jul 22. FEBS Lett. 2009. PMID: 19631211 Review.
Cited by
-
Aggregation on a membrane of particles undergoing active exchange with a reservoir.Eur Phys J E Soft Matter. 2012 Feb;35(2):12. doi: 10.1140/epje/i2012-12012-3. Epub 2012 Feb 23. Eur Phys J E Soft Matter. 2012. PMID: 22354679
-
The ArfGAP2/3 Glo3 and ergosterol collaborate in transport of a subset of cargoes.Biol Open. 2015 May 11;4(7):792-802. doi: 10.1242/bio.011528. Biol Open. 2015. PMID: 25964658 Free PMC article.
-
Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication.EMBO J. 2011 Jul 22;30(16):3337-52. doi: 10.1038/emboj.2011.242. EMBO J. 2011. PMID: 21785410 Free PMC article.
-
COPI budding within the Golgi stack.Cold Spring Harb Perspect Biol. 2011 Nov 1;3(11):a005231. doi: 10.1101/cshperspect.a005231. Cold Spring Harb Perspect Biol. 2011. PMID: 21844168 Free PMC article. Review.
-
Sensing membrane stresses by protein insertions.PLoS Comput Biol. 2014 Apr 10;10(4):e1003556. doi: 10.1371/journal.pcbi.1003556. eCollection 2014 Apr. PLoS Comput Biol. 2014. PMID: 24722359 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases