Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov;41(11):1473-7.
doi: 10.1515/CCLM.2003.226.

Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defect and Down syndrome?

Affiliations
Review

Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defect and Down syndrome?

Jean-Louis Guéant et al. Clin Chem Lab Med. 2003 Nov.

Abstract

One-carbon metabolism is under the influence of folate, vitamin B12 and genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR 677 C --> T and 1298 A --> C), of methionine synthase (MTR 2756 C --> G), methionine synthase reductase (MTRR 66 A --> G) and transcobalamin (TCN 776 C --> G). The pathogenesis of neural tube defect (NTD) may be related to this metabolism. The influence of the MTHFR 677 C --> T polymorphism reported in The Netherlands and Ireland can be questioned in southern Italy, France and Great Britain. MTRR, combined with a low level of vitamin B12, increases the risk of NTD and of having a child with NTD in Canada, while TCN 776 GG and MTRR 66 GG mutated genotypes associated with the MTHFR 677 CC wild-type are predictors of NTD cases in Sicily. Down syndrome (DS) is due to a failure of normal chromosomal segregation during meiosis, possibly related to one-carbon metabolism. MTHFR 677 C --> T and MTRR 66 A --> G polymorphisms are associated with a greater risk of having a child with DS in North America, Ireland and The Netherlands. In contrast, MTHFR 677 C --> T has no influence on DS risk in France and Sicily, while homocysteine and MTR 2756 AG/GG genotypes are predictors of DS risk in Sicily. In conclusion, NTD and DS are influenced by the same genetic determinants of one-carbon metabolism. The distinct data produced in different geographical areas may be explained by differences in the nutritional environment and genetic characteristics of the populations.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources