Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec;18(11):3097-104.
doi: 10.1111/j.1460-9568.2003.03047.x.

The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain

Affiliations
Comparative Study

The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain

Barbara K Lipska et al. Eur J Neurosci. 2003 Dec.

Abstract

The neonatal ventral hippocampal lesion in the rat has been used as a model of schizophrenia, a human disorder associated with changes in markers of dopamine and gamma-aminobutyric acid (GABA) circuits in various regions of the brain. We investigated whether alterations in mRNA markers related to the activity of midbrain dopaminergic and GABAergic neurons are associated with this model. We used in situ hybridization histochemistry to assess expression of mRNAs for dopamine transporter (DAT), tyrosine hydroxylase (TH) and glutamate decarboxylase-67 (GAD67) in the midbrain of adult rats with neonatal and adult ibotenic acid lesions of the ventral hippocampus. Neonatally lesioned rats showed in adulthood significantly reduced expression of DAT mRNA in the substantia nigra and the ventral tegmental area but no changes in the expression of TH and GAD67 mRNAs in these midbrain regions. Adult lesioned rats showed no changes in the expression of any of these genes. As the neonatal ventral hippocampal lesion reproduces many aspects of schizophrenia and is used as an animal model of this disorder, these results suggest that the reduction in DAT mRNA could result from developmental neuropathology in the ventral hippocampus and may thus represent a molecular substrate of the disease process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms