Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Nov;18(10):2722-30.
doi: 10.1111/j.1460-9568.2003.03013.x.

Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice

Affiliations
Comparative Study

Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice

Klemens Kaupmann et al. Eur J Neurosci. 2003 Nov.

Abstract

gamma-Hydroxybutyrate (GHB), a metabolite of gamma-aminobutyric acid (GABA), is proposed to function as a neurotransmitter or neuromodulator. gamma-Hydroxybutyrate and its prodrug, gamma-butyrolactone (GBL), recently received increased public attention as they emerged as popular drugs of abuse. The actions of GHB/GBL are believed to be mediated by GABAB and/or specific GHB receptors, the latter corresponding to high-affinity [3H]GHB-binding sites coupled to G-proteins. To investigate the contribution of GABAB receptors to GHB actions we studied the effects of GHB in GABAB(1)-/- mice, which lack functional GABAB receptors. Autoradiography reveals a similar spatial distribution of [3H]GHB-binding sites in brains of GABAB(1)-/- and wild-type mice. The maximal number of binding sites and the KD values for the putative GHB antagonist [3H]6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene acetic acid (NCS-382) appear unchanged in GABAB(1)-/- compared with wild-type mice, demonstrating that GHB- are distinct from GABAB-binding sites. In the presence of the GABAB receptor positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol GHB induced functional GTPgamma[35S] responses in brain membrane preparations from wild-type but not GABAB(1)-/- mice. The GTPgamma[35S] responses in wild-type mice were blocked by the GABAB antagonist [3-[[1-(S)-(3,4dichlorophenyl)ethyl]amino]-2-(S)-hydroxy-propyl]-cyclohexylmethyl phosphinic acid hydrochloride (CGP54626) but not by NCS-382. Altogether, these findings suggest that the GHB-induced GTPgamma[35S] responses are mediated by GABAB receptors. Following GHB or GBL application, GABAB(1)-/- mice showed neither the hypolocomotion, hypothermia, increase in striatal dopamine synthesis nor electroencephalogram delta-wave induction seen in wild-type mice. It, therefore, appears that all studied GHB effects are GABAB receptor dependent. The molecular nature and the signalling properties of the specific [3H]GHB-binding sites remain elusive.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources