Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 15;323(2):218-23.
doi: 10.1016/j.ab.2003.09.010.

Separation and recovery of DNA fragments by electrophoresis through a thermoreversible hydrogel composed of poly(ethylene oxide) and poly(propylene oxide)

Affiliations

Separation and recovery of DNA fragments by electrophoresis through a thermoreversible hydrogel composed of poly(ethylene oxide) and poly(propylene oxide)

Hiroshi Yoshioka et al. Anal Biochem. .

Abstract

We have synthesized and characterized a thermoreversible hydrogel of multiplied block copolymers, composed of poly(ethylene oxide) and poly(propylene oxide), for DNA electrophoresis. The aqueous solution of block copolymers turned into a hydrogel upon heating at temperatures above 10-11 degrees C, whereas it reverted into a solution upon cooling. Linear double-stranded DNA molecules migrated through the gel matrices at a rate that was inversely proportional to the logarithm of the DNA length. The hydrogel is most effective for separating DNA fragments in the 10- to 2000-bp range. The resolving range lay in-between the effective ranges of polyacrylamide and agarose gel electrophoreses of DNA. The gel slices containing DNA fragments were liquefied by cooling on ice, and the DNA was precipitated with ethanol. No contaminants that inhibit enzymatic reactions were found in the DNA recovered from the hydrogel. Plasmid DNA recovered from the hydrogel was recircularized with T4 DNA ligase and yielded highly efficient Escherichia coli transformation. Therefore, thermoreversible gel electrophoresis will be a useful method for DNA separation and isolation in recombinant DNA technology.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources