Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;18(2):397-9.
doi: 10.1096/fj.03-0464fje. Epub 2003 Dec 4.

Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo

Affiliations

Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo

Steffen Massberg et al. FASEB J. 2004 Feb.

Abstract

Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources