Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;18(2):347-9.
doi: 10.1096/fj.03-0330fje. Epub 2003 Dec 4.

Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice

Affiliations

Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice

Erdal Erol et al. FASEB J. 2004 Feb.

Abstract

Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of long-chain fatty acids (LCFA) for oxidation and for peroxisome proliferator-activated receptor alpha (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced beta-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. During standard diet, mitochondrial HMG CoA synthase mRNA was selectively reduced in L-FABP null liver. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L-FABP can activate ketogenic gene expression in fed mice. Thus, the mechanisms whereby L-FABP affects fatty acid oxidation may vary with physiological condition.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources