Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;75(3):460-6.
doi: 10.1189/jlb.0803388. Epub 2003 Dec 4.

The induction of Toll-like receptor tolerance enhances rather than suppresses HIV-1 gene expression in transgenic mice

Affiliations

The induction of Toll-like receptor tolerance enhances rather than suppresses HIV-1 gene expression in transgenic mice

André Báfica et al. J Leukoc Biol. 2004 Mar.

Abstract

Microbial-induced proinflammatory pathways are thought to play a key role in the activation of human immunodeficiency virus type 1 (HIV-1) gene expression. The induction of Toll-like receptor (TLR) tolerance leads to a complex reprogramming in the pattern of inflammatory gene expression and down-modulates tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1, and IL-6 production. Using transgenic (Tg) mice that incorporate the entire HIV-1 genome, including the long-terminal repeat, we have previously demonstrated that a number of different TLR ligands induce HIV-1 gene expression in cultured splenocytes as well as purified antigen-presenting cell populations. Here, we have used this model to determine the effect of TLR-mediated tolerance as an approach to inhibiting microbial-induced viral gene expression in vivo. Unexpectedly, Tg splenocytes and macrophages, rendered tolerant in vitro to TLR2, TLR4, and TLR9 ligands as assessed by proinflammatory cytokine secretion and nuclear factor-kappaB activation, showed enhanced HIV-1 p24 production. A similar enhancement was observed in splenocytes tolerized and then challenged with heterologous TLR ligands. Moreover, TLR2- and TLR4-homotolerized mice demonstrated significantly increased plasma p24 production in vivo despite lower levels of TNF-alpha. Together, these results demonstrate that HIV-1 expression is enhanced in TLR-reprogrammed host cells, possibly reflecting a mechanism used by the virus to escape the effects of microbial-induced tolerance during natural infection in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources