Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence
- PMID: 14657224
- PMCID: PMC2194133
- DOI: 10.1084/jem.20022227
Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence
Abstract
Our previous work demonstrated that cytotoxic T lymphocyte (CTL)-mediated tumor immunosurveillance of the 15-12RM tumor could be suppressed by a CD1d-restricted lymphocyte, most likely a natural killer (NK) T cell, which produces interleukin (IL)-13. Here we present evidence for the effector elements in this suppressive pathway. T cell-reconstituted recombination activating gene (RAG)2 knockout (KO) and RAG2/IL-4 receptor alpha double KO mice showed that inhibition of immunosurveillance requires IL-13 responsiveness by a non-T non-B cell. Such nonlymphoid splenocytes from tumor-bearing mice produced more transforming growth factor (TGF)-beta, a potent inhibitor of CTL, ex vivo than such cells from naive mice, and this TGF-beta production was dependent on the presence in vivo of both IL-13 and CD1d-restricted T cells. Ex vivo TGF-beta production was also abrogated by depleting either CD11b+ or Gr-1+ cells from the nonlymphoid cells of tumor-bearing mice. Further, blocking TGF-beta or depleting Gr-1+ cells in vivo prevented the tumor recurrence, implying that TGF-beta made by a CD11b+ Gr-1+ myeloid cell, in an IL-13 and CD1d-restricted T cell-dependent mechanism, is necessary for down-regulation of tumor immunosurveillance. Identification of this stepwise regulation of immunosurveillance, involving CD1-restricted T cells, IL-13, myeloid cells, and TGF-beta, explains previous observations on myeloid suppressor cells or TGF-beta and provides insights for targeted approaches for cancer immunotherapy, including synergistic blockade of TGF-beta and IL-13.
Figures










References
-
- Dunn, G.P., A.T. Bruce, H. Ikeda, L.J. Old, and R.D. Schreiber. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–998. - PubMed
-
- Matsui, S., J.D. Ahlers, A.O. Vortmeyer, M. Terabe, T. Tsukui, D.P. Carbone, L.A. Liotta, and J. Berzofsky. 1999. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J. Immunol. 163:184–193. - PubMed
-
- Terabe, M., S. Matsui, N. Noben-Trauth, H. Chen, C. Watson, D.D. Donaldson, D.P. Carbone, W.E. Paul, and J.A. Berzofsky. 2000. NKT cell-mediated repression of tumour immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat. Immunol. 1:515–520. - PubMed
-
- Ostrand-Rosenberg, S., M.J. Grusby, and V.K. Clements. 2000. Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J. Immunol. 165:6015–6019. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources