Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;229(3):838-46.
doi: 10.1148/radiol.2293021215.

Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging

Affiliations

Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging

Ali S Arbab et al. Radiology. 2003 Dec.

Abstract

Purpose: To evaluate the effect of using the ferumoxides-poly-l-lysine (PLL) complex for magnetic cell labeling on the long-term viability, function, metabolism, and iron utilization of mammalian cells.

Materials and methods: PLL was incubated with ferumoxides for 60 minutes, incompletely coating the superparamagnetic iron oxide (SPIO) through electrostatic interactions. Cells were coincubated overnight with the ferumoxides-PLL complex, and iron uptake, cell viability, apoptosis indexes, and reactive oxygen species formation were evaluated. The disappearance or the life span of the detectable iron nanoparticles in cells was also evaluated. The iron concentrations in the media also were assessed at different time points. Data were expressed as the mean +/- 1 SD, and one-way analysis of variance and the unpaired Student t test were used to test for significant differences.

Results: Intracytoplasmic nanoparticles were stained with Prussian blue when the ferumoxides-PLL complex had magnetically labeled the human mesenchymal stem and HeLa cells. The long-term viability, growth rate, and apoptotic indexes of the labeled cells were unaffected by the endosomal incorporation of SPIO, as compared with these characteristics of the nonlabeled cells. In nondividing human mesenchymal stem cells, endosomal iron nanoparticles could be detected after 7 weeks; however, in rapidly dividing cells, intracellular iron had disappeared by five to eight divisions. A nonsignificant transient increase in reactive oxygen species production was seen in the human mesenchymal stem and HeLa cell lines. Labeled human mesenchymal stem cells did not differentiate to other lineage. A significant increase in iron concentration was observed in both the human mesenchymal stem and HeLa cell media at day 7.

Conclusion: Magnetic cellular labeling with the ferumoxides-PLL complex had no short- or long-term toxic effects on tumor or stem cells.

PubMed Disclaimer

Comment in

MeSH terms

LinkOut - more resources