Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Dec 17;147(1-2):107-14.
doi: 10.1016/s0166-4328(03)00139-6.

Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat

Affiliations
Comparative Study

Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat

Claire L Taylor et al. Behav Brain Res. .

Abstract

The delayed spatial win-shift (DSWS) radial maze task requires that animals hold spatial information for reward location "on-line" both during task performance and across a delay. Temporary lidocaine inactivation of anterior cingulate (AC) and prelimbic (PL) regions of the rat medial prefrontal cortex (mPFC) has revealed dissociable effects on this task, suggesting different roles within working memory for each of these areas. However, further research has shown that mPFC deficits in the rat may only be transient in nature, particularly on the radial maze. The present study was conducted to examine the effects of permanent excitotoxic lesions of the mPFC in the DSWS task across repeated trials to assess whether change in the degree of impairment would occur over time. Results showed that rats with lesions centred on the prelimbic cortex (but with damage extending into the anterior cingulate) were impaired on the post-delay test phase of the DSWS task. This deficit was characterised by increased errors (both across and within phase), earlier error occurrence, and increased latencies. Only the number of choices correct before error improved across repeated test days. These results are consistent with the involvement of the rat mPFC in spatial working memory and response inhibition, supporting previous findings using transient lesions. However, the discovery that rats with mPFC lesions learned to delay the intrusion of errors into their choice sequence extends previous work, and provides support for studies showing that mPFC lesioned rats can improve some aspects of task performance given the opportunity to learn over repeated trials.

PubMed Disclaimer

Publication types

LinkOut - more resources