Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2003 Nov-Dec;27(6):375-84.

Extracutaneous ultrastructural alterations in pseudoxanthoma elasticum

Affiliations
  • PMID: 14660276
Case Reports

Extracutaneous ultrastructural alterations in pseudoxanthoma elasticum

Dealba Gheduzzi et al. Ultrastruct Pathol. 2003 Nov-Dec.

Abstract

Pseudoxanthoma elasticum (PXE) is caused by mutations in the ABCC6 gene, encoding for the membrane transporter MRP6, whose physiological role is still unknown. PXE is characterized by skin, eye, and cardiovascular alterations mainly due to mineralization of elastic fibers. The ultrastructural alterations of a large number of tissues obtained at autopsy from 2 PXE patients were analyzed and compared to clarify the involvement of the various organs in PXE and to identify cell types responsible for clinical manifestations. Ultrastructural alterations typical of PXE were present in all organs examined and consisted mostly of fragmentation and mineralization of a number of elastic fibers, abnormalities of collagen fibril shape and size, and, less frequently, deposition of aggregates of matrix constituents in the extracellular space. The severity of alterations was more pronounced in the organs affected by the clinical manifestations of PXE. Interestingly, veins and arteries were similarly damaged, the adventitia and the perivascular connective tissue being the most affected areas. Therefore, alterations in PXE are systemic and affect all soft connective tissues, even in the absence of specific clinical manifestations. The localization of alterations suggests that fibroblasts and/or smooth muscle cells are very likely involved in the pathogenesis of the disorder. These findings may help in the diagnosis of PXE when clinical manifestations affect internal organs.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources