Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003;14(10):1097-103.
doi: 10.1163/156856203769231583.

A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering

Affiliations
Comparative Study

A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering

Daisuke Iejima et al. J Biomater Sci Polym Ed. 2003.

Abstract

Non-collagenous phosphoproteins that interact with a type-I collagen are thought to nucleate bone mineral into collagen networks of mineralized tissues. Previously, phosphophoryn cross-linked to type-I collagen was reported to be an effective nucleator of appatite. However, free phosphophoryn molecules inhibit the formation of apatite in vitro. On the basis of the above study, we expected a collagen-phosphophoryn sponge to be a good scaffold for bone-tissue engineering and examined the formation of bone in orthotopically transplanted composites of the sponge and bone marrow osteoblasts in vivo in Fischer rats. Osteoblastic primary cells were obtained from the bone shaft of femorae of Fisher rats, according to the method of Maniatopoulous et al. A suspension of marrow cells was distributed through a flask with standard culture medium and incubated at 37 degrees C. When cultures were nearly confluent after 10 days, they were concentrated by centrifugation to 10(6) cells/ml and subcultured onto the synthesized collagen-phosphophoryn sponge and a collagen sponge (control). After 14 days, the composites of collagen-phosphophoryn and osteoblastic cells as well as control composites were transplanted into bone-defect sites of Fisher rats (holes 2 mm in diameter) and then the wounds were sutured. The composites were harvested at 1-8 weeks after implantation, and stained with hematoxylin and eosin. It was found that more bone was formed in the composites of collagen-phosphophoryn sponge and osteoblasts than control composites from 1 week to 8 weeks, suggesting that the collagen-phosphophoryn sponge is a good candidate as a scaffold for bone-tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources