Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Nov;8(2):537-76.
doi: 10.1517/14728214.8.2.537.

Adenosine receptor agonists: from basic medicinal chemistry to clinical development

Affiliations
Review

Adenosine receptor agonists: from basic medicinal chemistry to clinical development

Luo Yan et al. Expert Opin Emerg Drugs. 2003 Nov.

Abstract

Adenosine is a physiological nucleoside which acts as an autocoid and activates G protein-coupled membrane receptors, designated A(1), A(2A), A(2B) and A(3). Adenosine plays an important role in many (patho)physiological conditions in the CNS as well as in peripheral organs and tissues. Adenosine receptors are present on virtually every cell. However, receptor subtype distribution and densities vary greatly. Adenosine itself is used as a therapeutic agent for the treatment of supraventricular paroxysmal tachycardia and arrhythmias and as a vasodilatatory agent in cardiac imaging. During the past 20 years, a number of selective agonists for A(1), A(2A) and A(3) adenosine receptors have been developed, all of them structurally derived from adenosine. Several such compounds are currently undergoing clinical trials for the treatment of cardiovascular diseases (A(1)and A(2A)), pain (A(1)), wound healing (A(2A)), diabetic foot ulcers (A(2A)), colorectal cancer (A(3)) and rheumatoid arthritis (A(3)). Clinical evaluation of some A(1) and A(2A) adenosine receptor agonists has been discontinued. Major problems include side effects due to the wide distribution of adenosine receptors; low brain penetration, which is important for the targeting of CNS diseases; short half-lifes of compounds; or a lack of effects, in some cases perhaps due to receptor desensitisation or to low receptor density in the targeted tissue. Partial agonists, inhibitors of adenosine metabolism (adenosine kinase and deaminase inhibitors) or allosteric activators of adenosine receptors may be advantageous for certain indications, as they may exhibit fewer side effects.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources