Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 15;171(12):6954-60.
doi: 10.4049/jimmunol.171.12.6954.

Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand

Affiliations

Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand

Natalia Martin-Orozco et al. J Immunol. .

Abstract

Costimulatory signals received by diabetogenic T cells during priming by or upon secondary encounter with autoantigen are decisive in determining the outcome of autoimmune attack. The OX40-OX40 ligand (OX40L) costimulatory pathway is known to influence T cell responses, prompting us to examine its role in autoimmune diabetes. A null allele at OX40L completely prevented diabetes development in nonobese diabetic mice and strongly reduced its incidence in a TCR transgenic model (BDC2.5). However, somewhat paradoxically, the initial activation of T cells responsive to islet beta cell Ag was slightly faster and more efficient in the absence of OX40L, with an increased degree of cell proliferation and survival in the deficient hosts. Activated T cell migration into and retention within the islets was also slightly accelerated. When challenged in vitro, splenocytes from BDC2.5.OX40L(o/o) mice showed no altered reactivity to exogenously added peptide, no bias to the Th1 or Th2 phenotype, and no alteration in T cell survival. Thus, the OX40/OX40L axis has the paradoxical effect of dampening the early activation and migration of autoimmune T cells, but sustains the long-term progression to autoimmune destruction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources