Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;25(12):927-33.
doi: 10.1097/00043426-200312000-00004.

Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration

Affiliations
Review

Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration

Carlo Brugnara. J Pediatr Hematol Oncol. 2003 Dec.

Abstract

Sickle cell anemia is characterized by the presence of dense dehydrated erythrocytes that have lost most of their K content. Due to the unique dependence of Hb S polymerization on intracellular Hb S concentration, preventing this dehydration should markedly reduce polymerization. The erythrocyte intermediate conductance Ca-activated K channel (hSK4 or KCNN4), first described by Gardos, has been shown to be a major pathway for sickle cell dehydration. Studies with the imidazole antimycotic clotrimazole have shown reduction of sickle cell dehydration in vivo in a small number of patients with sickle cell disease; dose-limiting gastrointestinal and liver toxicities were observed. Based on the chemical structure of clotrimazole metabolites, a novel Gardos channel inhibitor, ICA-17043, has been developed. It has shown substantial activity both in vitro and in vivo in transgenic sickle mice. ICA-17043 is currently in phase 2 human trials. Another potential therapeutic target is the K-Cl cotransport. When sickle erythrocytes are exposed to relatively acidic conditions, they undergo cell shrinkage via activation of this pathway. K-Cl cotransport can be blocked by increasing the abnormally low erythrocyte Mg content of sickle erythrocytes. Oral Mg supplementation has been shown to reduce sickle cell dehydration in vivo in transgenic sickle mice and in patients in two separate clinical trials. Oral Mg pidolate is being tested in clinical trials in homozygous sickle cell disease and in Hb S/HbC (SC) disease, either as a single agent or in combination with hydroxyurea. The ongoing trials will determine the clinical effectiveness of therapies aimed at preventing sickle erythrocyte dehydration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms