The electrochemical proton gradient in Escherichia coli membrane vesicles
- PMID: 14664
- DOI: 10.1021/bi00624a006
The electrochemical proton gradient in Escherichia coli membrane vesicles
Abstract
Membrane vesicles isolated from Escherichia coli grown under various conditions generate a transmembrane pH gradient (delta pH) of about 2 pH units (interior alkaline) under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure delta pH and the distribution of the lipophilic cation triphenylmethylphosphonium to measure the electrical potential (delta psi) across the membrane, the vesicles are demonstrated to develop an electrochemical proton gradient (delta-muH+) of almost - 200 mV (interior negative and alkaline) at pH 5.5 in the presence of reduced phenazine methosulfate or D-lactate, the major component of which is a deltapH of about - 120 mV. As external pH is increased, deltapH decreases, reaching 0 at about pH 7.5 and above, while delta psi remains at about - 75 mV and internal pH remains at pH 7.5-7.8. The variations in deltapH correlate with changes in the oxidation of reduced phenazine methosulfate or D-lactate, both of which vary with external pH in a manner similar to that described for deltapH. Finally, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin with little change in delta-muH+ and no change in respiratory activity. These data and those presented in the following paper (Ramos and Kaback 1976) provide strong support for the role of chemiosmotic phenomena in active transport and extend certain aspects of the chemiosmotic hypothesis.
Similar articles
-
The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.Proc Natl Acad Sci U S A. 1976 Jun;73(6):1892-6. doi: 10.1073/pnas.73.6.1892. Proc Natl Acad Sci U S A. 1976. PMID: 6961 Free PMC article.
-
The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles.Biochemistry. 1977 Mar 8;16(5):854-9. doi: 10.1021/bi00624a007. Biochemistry. 1977. PMID: 14665
-
Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.Biochemistry. 1980 Jan 8;19(1):1-9. doi: 10.1021/bi00542a001. Biochemistry. 1980. PMID: 6986161
-
The electrochemical proton gradient in Mycoplasma cells.Eur J Biochem. 1981 Jan;113(3):491-8. doi: 10.1111/j.1432-1033.1981.tb05090.x. Eur J Biochem. 1981. PMID: 6260481
-
It's Better To Be Lucky Than Smart.Annu Rev Biochem. 2021 Jun 20;90:1-29. doi: 10.1146/annurev-biochem-011520-105008. Epub 2021 Jan 20. Annu Rev Biochem. 2021. PMID: 33472005 Review.
Cited by
-
Requirement for membrane potential in injection of phage T4 DNA.Proc Natl Acad Sci U S A. 1979 Sep;76(9):4669-73. doi: 10.1073/pnas.76.9.4669. Proc Natl Acad Sci U S A. 1979. PMID: 41245 Free PMC article.
-
Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.Appl Environ Microbiol. 1991 Jan;57(1):255-9. doi: 10.1128/aem.57.1.255-259.1991. Appl Environ Microbiol. 1991. PMID: 2036013 Free PMC article.
-
The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.Biochem J. 1978 Jul 15;174(1):257-66. doi: 10.1042/bj1740257. Biochem J. 1978. PMID: 212022 Free PMC article.
-
Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc Natl Acad Sci U S A. 1979 Feb;76(2):650-4. doi: 10.1073/pnas.76.2.650. Proc Natl Acad Sci U S A. 1979. PMID: 284390 Free PMC article.
-
Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci.Microbiol Mol Biol Rev. 1998 Dec;62(4):1021-45. doi: 10.1128/MMBR.62.4.1021-1045.1998. Microbiol Mol Biol Rev. 1998. PMID: 9841664 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Research Materials