Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:228:141-93.
doi: 10.1016/s0074-7696(03)28004-9.

Redox control, redox signaling, and redox homeostasis in plant cells

Affiliations
Review

Redox control, redox signaling, and redox homeostasis in plant cells

Karl-Josef Dietz. Int Rev Cytol. 2003.

Abstract

Redox chemistry is a key feature of life. Oxidized substrates are reduced to synthesize functional molecules; reduced substrates are oxidized for energy supply. In addition, cells must fight against uncontrolled oxidation of essential constituents, a process that continuously occurs in an atmosphere of 21% O2. The redox situation is further complicated in plants with their highly reactive photosynthetic metabolism. To this end it is now well established that redox regulation is a central element in adjusting plant metabolism and development to the prevailing environmental conditions. This review introduces general redox chemistry and the main components of the cellular redox network, namely pyridine nucleotides, ascorbate, glutathione, lipoic acid, tocopherol, thioredoxins, glutaredoxins, peroxiredoxins, and other thiol proteins. Examples for redox sensing, transduction, redox-regulated enzymes and transcription, and the function of regulatory circuits are presented. Emphasis is placed on redox regulation of photosynthesis, which is the best understood metabolism governed by redox control on essentially all levels, ranging from gene transcription to translation, assembly and turnover, as well as short-term adaptation by state transition and enzyme activity. Increasing evidence shows the importance of redox regulation in the context of transport, plant development, and programmed cell death.

PubMed Disclaimer

Publication types

MeSH terms